AudioDope
ContentsIndexHome
PreviousUpNext
MP3 Audio

  

MPEG-1 or MPEG-2 Audio Layer III, more commonly referred to as MP3, is a patented encoding format for digital audio which uses a form of lossy data compression. It is a common audio format for consumer audio storage, as well as a de facto standard of digital audio compression for the transfer and playback of music on digital audio players. 

  

MP3 is an audio-specific format that was designed by the Moving Picture Experts Group (MPEG) as part of its MPEG-1 standard and later extended in MPEG-2 standard. The first MPEG subgroup – Audio group was formed by several teams of engineers at Fraunhofer IIS, University of Hannover, AT&T-Bell Labs, Thomson-Brandt, CCETT, and others.[7] MPEG-1  Audio (MPEG-1 Part 3), which included MPEG-1 Audio Layer I, II and III was approved as a committee draft of ISO/IEC  standard in 1991,finalised in 1992 and published in 1993 (ISO/IEC 11172-3:1993[5]). Backwards compatible MPEG-2 Audio (MPEG-2 Part 3) with additional bit rates and sample rates was published in 1995 (ISO/IEC 13818-3:1995). 

  

The use in MP3 of a lossy compression algorithm is designed to greatly reduce the amount of data required to represent the audio recording and still sound like a faithful reproduction of the original uncompressed audio for most listeners. An MP3 file that is created using the setting of 128 kbit/s will result in a file that is about 1/11 the size of the CD file created from the original audio source. An MP3 file can also be constructed at higher or lower bit rates, with higher or lower resulting quality. 

  

The compression works by reducing accuracy of certain parts of sound that are considered to be beyond the auditory resolution ability of most people. This method is commonly referred to as perceptual coding. It uses psychoacoustic models to discard or reduce precision of components less audible to human hearing, and then records the remaining information in an efficient manner. 

  

The MPEG-1 standard does not include a precise specification for an MP3 encoder, but does provide example psychoacoustic models, rate loop, and the like in the non-normative part of the original standard. At present, these suggested implementations are quite dated. Implementers of the standard were supposed to devise their own algorithms suitable for removing parts of the information from the audio input. As a result, there are many different MP3 encoders available, each producing files of differing quality. Comparisons are widely available, so it is easy for a prospective user of an encoder to research the best choice. It must be kept in mind that an encoder that is proficient at encoding at higher bit rates  (such as LAME) is not necessarily as good at lower bit rates. 

  

When performing lossy audio encoding, such as creating an MP3 file, there is a trade-off between the amount of space used and the sound quality of the result. Typically, the creator is allowed to set a bit rate, which specifies how many kilobits the file may use per second of audio. The higher the bit rate, the larger the compressed file will be, and, generally, the closer it will sound to the original file. 

  

With too low a bit rate, compression artifacts (i.e., sounds that were not present in the original recording) may be audible in the reproduction. Some audio is hard to compress because of its randomness and sharp attacks. When this type of audio is compressed, artifacts such as ringing or pre-echo are usually heard. A sample of applause compressed with a relatively low bit rate provides a good example of compression artifacts. 

  

The simplest type of MP3 file uses one bit rate for the entire file — this is known as Constant Bit Rate (CBR) encoding. Using a constant bit rate makes encoding simpler and faster. However, it is also possible to create files where the bit rate changes throughout the file. These are known as Variable Bit Rate (VBR) files. The idea behind this is that, in any piece of audio, some parts will be much easier to compress, such as silence or music containing only a few instruments, while others will be more difficult to compress. So, the overall quality of the file may be increased by using a lower bit rate for the less complex passages and a higher one for the more complex parts. With some encoders, it is possible to specify a given quality, and the encoder will vary the bit rate accordingly. Users who know a particular "quality setting" that is transparent to their ears can use this value when encoding all of their music, and generally speaking not need to worry about performing personal listening tests on each piece of music to determine the correct bit rate. 

  

Perceived quality can be influenced by listening environment (ambient noise), listener attention, and listener training and in most cases by listener audio equipment (such as sound cards, speakers and headphones). 

  

Several bit rates are specified in the MPEG-1 Audio Layer III standard: 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256 and 320 kbit/s, and the available sampling frequencies are 32, 44.1 and 48 kHz. Additional extensions were defined in MPEG-2 Audio Layer III: bit rates 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160 kbit/s and sampling frequencies 16, 22.05 and 24 kHz. 

  

A sample rate of 44.1 kHz is almost always used, because this is also used for CD audio, the main source used for creating MP3 files. A greater variety of bit rates are used on the Internet. The rate of 128 kbit/s is commonly used at a compression ratio of 11:1, offering adequate audio quality in a relatively small space. As Internet bandwidth availability and hard drive sizes have increased, higher bit rates up to 320 kbit/s are widespread. 

  

MPEG audio may use variable bitrate (VBR), accomplished via bitrate switching on a per-frame basis. VBR is used when the goal is to achieve a fixed level of quality. The final file size of a VBR encoding is less predictable than with constant bitrate. Average bitrate is VBR implemented as a compromise between the two – the bitrate is allowed to vary for more consistent quality, but is controlled to remain near an average value chosen by the user, for predictable file sizes. Although an MP3 decoder must support VBR to be standards compliant, historically some decoders have bugs with VBR decoding, particularly before VBR encoders became widespread. 

  

When you click Options button MP3 Options dialog shows 

  

 

  

Constant bitrate 

To select constant bitrate (CBR) click CBR radio button. Then select the bitrate. 

  

Variable bitrate 

Clicking variable bitrate you will enable the parameters for VBR minimum bitrate, maximum bitrate, average bitrate. Select also the quality for encoding the file. 

  

Channel mode 

Sets the Mono/Stereo encoding options for the output file. If the input data is mono, don’t set this property to Stereo. 

  

Enable CRC 

Use this property to enable/disable CRC-checksum in the output bitstream 

  

  

  

 

 

Copyright (c) 2013 AudioDope team. All rights reserved.
What do you think about this topic? Send feedback!